
 - 1 -

Evolving Prototypes Towards The Best-suited Design and
Interaction Schema Using The Genetic Algorithm

Ragaad AlTarawneh
Computer Graphics and HCI Group

University of Kaiserslautern
Kaiserslautern, Germany.
tarawneh@cs.uni-kl.de

Shah Rukh Humayoun
Computer Graphics and HCI Group

University of Kaiserslautern
Kaiserslautern, Germany.
humayoun@cs.uni-kl.de

ABSTRACT
The recent advances in the mobile environment, such as
multi-touch gestures paradigm, introduce new challenges
for the interaction designers in producing the best-suited
final prototype. Moreover, the short delivery-time pressure
of the current mobile market makes it harder to perform the
detailed evaluations for selecting the best prototype
amongst the created ones. In this vision paper, we propose
an approach for evolving the created prototypes towards the
final prototype with the best-suited design and interaction
schema. Our approach is based on using the Genetic
Algorithm for searching the best solution (prototype with
the best-suited design and interaction schema) from the set
of created prototypes during the design phase. The
proposed approach suits the mobile application
development and would enhance the interaction designers’
ability of producing the final prototype of the target mobile
application in an efficient and effective way.

Author Keywords
Interaction design, genetic algorithm, mobile environments.

ACM Classification Keywords
D.2.2 [Design Tools and Techniques]: Evolutionary
prototyping, H.5.2 [User Interfaces]: Prototyping.

INTRODUCTION
Recently, we witness a large acceptance of using the mobile
applications (commonly abbreviated as mobile apps or just
apps) for performing different tasks, both in business
processes and also in our daily life [3]. This is because of
the simplicity of these mobile apps for specific tasks and
the availability of mobile devices in most of our daily
routine. The current single-task focusing paradigm [4] of
these mobile apps makes them suitable for performing
different activates – e.g., finding train timings, weather
forecast, etc. – while in mobility. The impact of this is the
users’ growing requests for the availability of these mobile
apps in short time. Due to this, software companies face the
stress of launching their products in short time in order to
fulfill the users’ demands and also to compete with their
market competitors.

The recent advances in the mobile interaction paradigm as
well as the availability of a number of operating systems
and mobile devices makes the designing process of these
mobile apps an increasingly challenge for the interaction
designers. During the design phase, interaction designers
normally build a number of candidate prototypes,
sometimes through involving end users in focus groups
kind of meetings [3]. Evaluating and selecting the final
prototype amongst these created ones is a time-consuming
and efforts-taking process. Due to the short delivery-time
pressure, normally the interaction design teams lack the
time and resources for performing detailed evaluation in
order to select the final prototype amongst the created ones.
While even if the final prototype has been selected after the
detailed evaluation, it is possible that few design elements
or the attached interaction schema may not be the best-
suited ones. It is also possible that the selected final
prototype may provide better design and interaction for
some parts while less for the remaining parts compared to
the other prototypes. This may cause a revision in the
design in later stages, which could make the development
more costly and time consuming. Hence, selecting the final
prototype with the best-suited design and interaction
schema is a critical task for the current mobile application
development world and plays an important role for the
success of the end product.

To tackle this challenge, we propose an approach for
evolving the created prototypes towards the final prototype
while choosing the best-suited design and mobile
interaction schema from all of the created prototypes
through evolutionary steps. Our approach is based on using
the Genetic Algorithm (GA) [1] for searching the best
solution (prototype with the best-suited design and
interaction schema) from the set of created prototypes. The
genetic algorithm is based on search methods that employ
processes found in natural biological evolution. These
methods search or operate on a given population of
potential solutions to find out a particular solution against
some specification or criteria [2]. We propose to use the
GA approach for generating the final prototype (the best
solution) while checking against the required mobile app’s
functionalities, the design and interaction elements, and the
target mobile environment. The best solution in our context
means that the final prototype contains the best-suited
design and interaction elements aiming at providing the

Copyright is held by the owner/author(s).

PID-MAD 2013, Aug 27 2013, Munich, Germany.
(In Conjunction with MobileHCI '13, Aug 27-30 2013, Munich, Germany.)

 - 2 -

users a better solution for performing their tasks in efficient
and effective manners. The proposed approach would
enhance not only the interaction designers’ ability to
produce the best-suited final prototype in an efficient and
accurate way, but also decreases the time and the cost for
reaching to this final prototype.

The remainder of this paper is structured as follows. In
Section 2, we explain briefly the idea of the genetic
algorithm. In Section 3, we introduce our approach for
generating the best-suited final prototype through applying
the genetic algorithm. We conclude in Section 4.

THE GENETIC ALGORITHM
The Genetic Algorithm (GA) [1] is a search technique that
is used in computing to find true or approximate solutions
in optimization and search problems. Genetic algorithm is
categorized as global search heuristic [2]. The technique is
implemented as a computer simulation in which a
population of the abstract representations (called
chromosomes, genotypes, or genomes) of the candidate
solutions (called individuals, creatures, or phenotypes) for a
combinatorial problem evolves toward the better solutions.

The evolution step usually starts from a population of
randomly generated individuals. In each generation, the
fitness of an individual in the population is evaluated; then
multiple individuals are stochastically selected from the
current population (based on their fitness), and finally
modified (recombined and possibly mutated) to form a new
population. The new population is then used in the next
iteration of the algorithm. Commonly, the algorithm
terminates when either a maximum number of generations
has been produced, or a satisfactory fitness level has been
reached for the population. If the algorithm has been
terminated due to a maximum number of generations, a
satisfactory solution may or may not have been reached.
The genetic algorithm consists of the following four steps:

Chromosome Encoding
This process is responsible for representing the data into
chromosomes. Each chromosome represents one of the
candidate solutions in the search space. An example of a
chromosome is shown in Figure 1, where it is represented
by a set of float numbers. Each float number in this string
represents some characteristic of the solution. There are
plenty of ways for encoding the data [1, 2], such as through
integers or real numbers, which mainly depends on the
underlying problem.

Figure 1. An encoded chromosome using the float numbers.

Crossover
In the crossover stage, the genes are selected from different
parent chromosomes and then new offsprings have been
created. The simplest way of doing crossover is to choose
randomly some crossover point; where everything before
this point is copied from the first parent while everything

after this crossover point is copied from the second parent
[1]. Figure 2 shows an example of creating two new
offsprings from two parent chromosomes.

Figure 2. In this crossover example, the genes values in the

orange boxes were selected to be the crossing points in order
to generate the new offsprings.

Mutation
After the crossover has been performed, the mutation step is
taken place. This is to prevent falling all solutions in
population into a local optimum of solved problem [1, 2].
Mutation changes randomly the new offspring. Figure 3
shows the example of chromosome 1 (from Figure 1) after
the mutation.

Figure 3. The mutation in the chromosome is done through
swapping the value of one gene, as shown by the red color.

Elitism
In this stage, the best chromosomes (or the few best ones)
are first copied and then are replaced with the old
population in order to eliminate the bad chromosomes. The
elitism process increases rapidly the performance of GA,
because it prevents losing the best-found solutions.

The GA proceeds till the last three stages have not repeated
to the maximum number of iterations or the GA reaches to
the optimal solution.

THE METHODOLOGY
The goal of our approach is to evolve the created prototypes
towards the final prototype that would deliver the users the
possible best-suited design and mobile interaction schema
in order to enable them to perform their tasks in efficient
and effective ways. Our approach is based on reaching to
the final prototype through applying the genetic algorithm
approach in which the best solution (in our case that is the
final prototype) is selected through an evolutionary process.
This evolutionary process operates on a given population of
potential solutions (in our case, these are the created

0.4$ 0.3$ 0.1$ 0.7$ 0.4$ 0.6$ 0.4$ 0.8$

0.4$ 0.3$ 0.1$ 0.7$ 0.4$ 0.6$ 0.4$ 0.8$

0.8$ 0.7$ 0.3$ 0.9$ 0.3$ 0.6$ 0.1$ 0.7$

0.4$ 0.3$ 0.1$ 0.7$ 0.3$ 0.6$ 0.1$ 0.7$

0.8$ 0.7$ 0.3$ 0.9$ 0.4$ 0.6$ 0.4$ 0.8$

Parent chromosome 1:

Parent chromosome 2:

New offspring chromosome 1:

New offspring chromosome 2:

0.4$ 0.3$ 0.1$ 0.7$ 0.4$ 0.6$ 0.4$ 0.8$

Chromosome 1:

After mutation:

0.4$ 0.3$ 0.1$ 0.7$ 0.4$ 0.9$ 0.4$ 0.8$

 - 3 -

prototypes by interaction designers in early stage) to find
out a particular solution (the final prototype with the best-
suited design and interaction schema) against some
specification or criteria (e.g., UI elements, design layout,
interaction elements and schema, target mobile
environment, etc.).

We aim to find the best solution (i.e., the final prototype)
with having the highest acceptance ratio of the design and
the interaction schema. This acceptance ratio is measured
using the weight value of the acceptance criteria, which in
our case is a combination of the designed layout, the UI
elements, the mobile interaction elements and schema, and
the target mobile environment. We assume that the weight
value of a particular functionality, required by the target
mobile app, depends on how this functionality is formulated
in the GUI. We also say that this weight value may differ
from one prototype to another one for the same feature due
to the different formulation of these combinational
elements. These different variations between the weight
values, due to the different formulation of combinational
elements, define the fitness of the proposed solutions. In the
forthcoming subsections, first we explain how to create
chromosomes from the created prototypes in order to apply
them in GA and then we introduce our approach complete
workflow for applying it in the mobile application
development.

The Chromosomes Creation Process
We assume that F is the set of functionalities – already
elicited in the requirement phase – that is supposed to be
provided by the target mobile app. Hence, the created
prototypes should have provided the ways to achieve the
required functionalities. While the fi ∈ F represents a single
functionality in the set F. In the current mobile
environment, not only the UI elements are important but
also the design layout and the interaction schema (e.g.
touch gestures) play important roles for the success of the
end product. A functionality fi can be formulated in
different ways in different prototypes, depends on the
combinational elements. For example, providing a zooming
functionality to a frame area it is possible to formulate it in
many ways. Either through a plus-and-minus button, or
through a zooming in-out touch gesture with two figures, or
through a combination of both. We assume that each
required functionality fi corresponds to a set M in which
each element is a tuple (m, w). Each m, in the set M,
represents a possible formulation (depends on the used UI
elements, the design layout, the interaction elements and
schema, and the target mobile environment) of the
functionality fi while the corresponding w represents the
weight value of this formulation m through a float number
ranging from 0 to 1. For example, in the above-described
example we assume that the weight value of the plus-and-
minus button formulation is 0.5, with the zooming in-out
touch gesture formulation is 0.7, while with the both
combination formulation is 0.9. The calculation of this

weight value is based on many factors such as the user
satisfaction level with a particular formulation, the target
mobile devices and environment, the ergonomics facts
about the formulation, etc. As this is out of the scope of this
paper, so we assume that such standard studies would be
done to give the weight values to different formulations.

The created prototypes by interaction designers are required
to fulfill the functionalities set F. We assume that FPn
represents the set of functionalities provided by a particular
prototype Pn, where n is the unique prototype number and
FPn ⊆ F. To create the chromosome cn of a prototype Pn,
we use the set FPn from where we get the weight value of
each functionality fi by checking it in the corresponding set
M against its formulation in the prototype Pn. So keeping
the previous example, if the prototype p1 provides the
zooming functionality with the plus-minus button then the
gene g1 of the chromosome c1 will have 0.5 weight value,
while if the prototype p2 provides the zooming functionality
with zooming in-out touch gesture then the gene g1 of
chromosome c2 will have 0.7 weight value. Through
applying this technique for each functionality in the set F,
we create a set of chromosomes C for the set P of all the
created prototypes. These chromosomes will have the
weight values of genes according to the corresponding
functionality formulation in the created prototypes.

This set of chromosomes C, corresponding to the set P of
the created prototypes, is used as the initial population in
the GA. Then in the GA, a new set of the solutions is
created using the GA operations (i.e., the cross-over, the
mutation, and the elitism). The GA quits in two cases: the
first one is when the result approaches to the optimal
solution, while the second one is when the GA operations
exceed to the maximum number of iterations. The result of
these steps is a better solution by the time; i.e., a
chromosome cf with a better fitness value survives. This
resulting chromosome cf is then used to produce the final
prototype that will have the best-suited design and
interaction schema from the created prototypes.

The Workflow
Our proposed approach’s workflow consists of six phases
for evolving the created prototypes towards the best
prototype. Figure 4 shows an overview of the approach’s
workflow. Following are the brief details of each phase:

• In the first phase, the software team defines the set of
functionalities/requirements that are supposed to be
provided by the target mobile application.

• Then the interaction design team creates a set of
candidate prototypes for the target mobile application.

• If the set M has not been created earlier against the set of
functionalities, then the team creates this set. This set M
provides the weight value to a functionality based on how
it is formulated in the prototype.

 - 4 -

Figure 4: The workflow for producing the best-suited prototype through applying the genetic algorithm.

• In phase four, the interaction design team creates the
chromosomes against all the prototypes, created in phase
two, using the set M. The genes in each chromosome will
have the weight value according to how the
functionalities are formulated in the underlying
prototypes. The team calculates the final weight of each
chromosome and if the summation of a chromosome is
less than a specified threshold then the corresponding
prototype is discarded from the solution. The remaining
set of chromosomes will be the input population to the
GA.

• In phase five, first the interaction design team defines the
fitness function for the GA. The main constraint for the
fitness function is to get the best chromosome, which will
in fact represent the solution with the maximum weight
value. The GA operations (i.e., the crossover, the
mutation, and the elitism) are performed to generate more
solutions (chromosomes) and the best solutions amongst
them are then selected. The GA operations are repeated
till they reach to the maximum number of iterations or the
final chromosome converges to the optimal solution has
been selected. This selected chromosome contains the
maximum weight value.

• In phase six, the final prototype is generated against the
best-generated solution (i.e., the final selected
chromosome). The final prototype could be generated
manually by cross checking the final selected
chromosome’s genes against the formulation in set M or
through some automated tool support. The interaction
design team could perform a quick evaluation on this
generated prototype to see its effectiveness and
efficiency.

CONCLUSION
In this paper, we proposed an approach for evolving the
created prototypes towards the final prototype using the
genetic algorithm. The approach searches the best solution
(i.e., the prototype with the best-suited design and
interaction schema) from the set of created prototypes. The
approach is useful for reaching to the best solution
accurately and in a cost-effective manner.

This is a first work towards applying the genetic algorithm
in mobile app prototyping. Many things need to be done in
order to utilize the approach with its full power. Especially,
there is a need to do the studies for finding out the different
combinational formulations of functionalities in prototyping
and the weight value allocation to these formulations. In
future, we plan to perform evaluation studies with mobile
interaction design teams to check the feasibility and
effectiveness of our approach.

REFERENCES
1. Banzhaf, W., Francone, F. D., Keller, R. E., and Nordin,

P. Genetic Programming: an Introduction: On the
Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998.

2. Levin, M. The Evolution of Understanding: A Genetic
Algorithm Model of the Evolution of Communication.
Biosystems, 36(3), 167-78, 1995.

3. Davis, R. C., Saponas, T. S., Shilman, M., and Landay,
J. A. SketchWizard: Wizard of Oz Prototyping of Pen-
Based User Interfaces. UIST ’07, 119-128, ACM, 2007.

4. Lin, J., Newman, M. W., Hong, J. I., and Landay, J. A.
Denim: Finding a Tighter Fit Between Tools and
Practice for Web Site Design. CHI ’00, 510-517, 2000.

Phase&1:
The$so'ware$team$defines$asetof$

func3onali3es/requirements$that$are$

supposedtobe$achieved$inthetarget$app.

0.4$ 0.2$ 0.1$ 0.8$ 0.8$ 0.9$ 0.8$ 0.6$

0.7$ 0.2$ 0.2$ 0.8$ 0.3$ 0.9$ 0.8$ 0.1$
0.7$ 0.9$ 0.8$ 0.8$ 0.3$ 0.9$ 0.8$ 0.8$

F1:$HHHHHHHHHHHH$

F2:$HHHHHHHHHHHHH$

.$

Fn:$HHHHHHHHHHHHHH$

Phase&2:
The$interac3on$design$team$createsa

setofcandidate$prototypes.

Theset

M$(m,#w)$

chromosome-1

chromosome-n

Phase&3:
ThesetM (m, w)I is created if it has

not been created early.

Phase&4:
The$team$createsthesetofchromosomesforall$

the$created$prototypes$using$thesetM (m, w).

Phase&5:
TheGAis$applied$for$genera3ng$the$best#solu-on#

(chromosome)outoftheproposed$ones.

Phase&6:
The$final$prototypeisgenerated$(automa3cally$

or$manually)$usingthebest$chromosome,$

generatedbytheGAintheprevious$phase.

