
A Blackboard-Like Architecture for the Development of
Evolving High Fidelity Mobile Application Prototypes

Bodo Igler
Department of

Computer Science
bodo.igler@hs-rm.de

Tobias Braumann
Department of

Computer Science
tobias.braumann@student.hs-rm.de

Stephan Böhm
Department of

Media Management
stephan.boehm@hs-rm.de

RheinMain University of Applied Sciences, Wiesbaden, Germany

ABSTRACT
The success of mobile applications depends on the incorpora-
tion of key features specific to their intended use. The identi-
fication of key features can be based on the iterative devel-
opment of prototypes with varying features and increasing
levels of fidelity. Mixed- to high-fidelity of the prototypes
to both user interface and application/business logic features
is required in order to support the normal usage context of
mobile applications.

This paper proposes a framework for the development of
evolving high-fidelity mobile application prototypes. A pro-
totype family is produced in iterative-incremental cycles. In
each iteration several prototype variants are built and eval-
uated. Feature selection and efficient creation of prototype
variants are achieved with the help of a light-weight compo-
nent model based on the blackboard architecture style.

A first version of the framework has been implemented and
evaluated on the basis of one case study.

Author Keywords
Mobile computing; design and evaluation methods; field
studies; blackboard architecture; feature-oriented
development; software product lines; SMAT

ACM Classification Keywords
D.2.2. Design Tools and Techniques: Evolutionary
Prototyping

General Terms
Design; Human Factors

INTRODUCTION
Modern smartphone platforms provide a number of innova-
tive features which have prepared the ground for myriads of
different mobile applications (apps) with novel functional-
ity and unique user experience. While smartphone platforms

Copyright is held by the owner/author(s).

PID-MAD 2013, Aug 27 2013, Munich, Germany.
(In Conjunction with MobileHCI ’13, Aug 27-30 2013, Munich, Germany.)

keep on evolving, the variety grows even wider and develop-
ers are challenged to focus on the right features, as they want
to guarantee the success of their apps.

There are extensive investigations on key features of mo-
bile applications, ranging from general studies on user accep-
tance, quality of experience and usability [13, 3, 2] to research
on success factors in specific application domains, e.g. [10].
[2] evaluate more than one hundred mobile usability studies
from 2000 until 2010. They observe that most of these stud-
ies are based on laboratory tests and that “there is no usabil-
ity evaluation framework that yet exists in the context of a
mobile computing environment”. Laboratory environments
can only partially simulate the normal usage context of mo-
bile applications (natural motion, interruptions, multitasking
and noise) [16]. Mixed- to high-fidelity prototypes can be
used in the laboratory as well as in field tests. This paper
proposes a framework which facilitates the development of
mixed- to high-fidelity prototypes whose iterative evaluation
and re-design is the basis for the identification of key features.

The framework is required to satisfy three main objectives:

1. Field-Test Support: The prototypes can be used both in the
laboratory and in the field.

2. High Fidelity: Fidelity in the context of this paper concerns
the user interface properties as well as rich application and
business logic of mobile applications.

3. Design Change Efficiency: Changes to the UI as well as to
the application and business logic can be implemented in
short iteration cycles.

The proposed framework is mainly based on the blackboard
architecture style. A first version of this framework has al-
ready been implemented during the research project SMAT
(Success Factors of Mobile Application Design for Public
Transportation). An evolving set of app prototypes has been
produced within the framework and on the basis of end-user
feedback.

BACKGROUND AND RELATED WORK
There are several process models and approaches which em-
phasize user satisfaction. All agile process models [9] and,
more specifically, user-centered design [5] emphasize user in-
volvement. [6] present a framework which comprehensively
combines user-centered design with agile software develop-
ment. Application of these concepts in the context of this



Figure 1. Blackboard-Like Prototype Architecture

paper leads to iterative development with the core activities
build and evaluate.

Software Product Line Engineering (SPLE) considers the de-
velopment of a product family (= software product line, SPL)
[1]. All members (products) of a product family share a
core of commonalities, while being distinguished by certain,
varying features. This paper proposes to base the iterative
development of a prototype on an evolving product family
whose members are distinguished by different feature vari-
ants. There is little SPLE research for mobile applications.
The existing research is mainly concerned with the variabil-
ity introduced by different platforms [14]. The main interest
of this paper with regards to SPLE lies in the development
of a component model which covers the complete variabil-
ity of evolving mobile app prototypes and which supports the
efficient creation of prototype variants from feature choices.

There are several existing component models which can serve
as the basis for mobile SPLs. These range from sophisticated
service-oriented approaches like OSGi [11] to experimental
agent-based approaches (cf. e.g. [12]). However, the existing
approaches are too heavy-weight for the efficient creation of
prototypes. A relatively light-weight approach which suits
the purposes of the above-stated objectives is presented in
the next section. It is based on the blackboard architecture
style. According to [15] the blackboard architecture style
consists of a central communication center, the blackboard,
and a group of cooperating experts which utilize the black-
board to achieve a common goal. This architecture style has
the advantage of conceptual simplicity and a high level of
changeability. Its major disadvantages are: difficulties with
the initial structuring of the problem to be solved, improper
complex behavior of the loosely coupled experts and compli-
cated routing.

PROTOTYPING FRAMEWORK
This section outlines the conceptual and technical architec-
ture of the framework. It concludes with a brief discussion
of the experience gained by implementing and using a first
version of the framework.

Component Model
The proposed prototyping framework is conceptually based
on a blackboard approach (see figure 1). Each prototype is
decomposed into independent components. Each component
focuses on a particular task, e.g. presenting a form to be filled

<<component>> data
(provided)

data
(required)

action
(provided)

action
(required)

Figure 2. Connector Types

in by the user or connecting to a web service. The compo-
nents communicate with each other via a communication cen-
ter, the blackboard. The components are thus loosely coupled
with respect to both control and data connections.

The component model comprises four connector types (see
figure 2). Each component posts all the data it can provide
(provided data) and all the events it accepts, i.e. all the ac-
tions it can perform (provided action), on the blackboard.
Whenever a component needs data to perform a task, it posts
a data request (required data) on the blackboard. It is the
blackboard’s responsibility to resolve the data dependency,
i.e. to find the components which can provide the requested
data. Possibly, the blackboard has to perform the data resolu-
tion recursively, as a component which provides the requested
data may in turn request some other data to perform its task.
A component can also post an event (action required). It is
the blackboard’s responsibility to route the event to the com-
ponent which accepts the event and to resolve all data depen-
dencies of the called component. Data resolution may again
imply the invocation of several components.

The blackboard itself is not part of the component model. It is
the instance which implements the underlying event routing
and data resolution mechanism. This mechanism is illustrated
with the help of an example:

Figure 3 displays a SearchForm view component which pro-
vides three pieces of information (start, destination and date-
Time) and requires the action displaySearchResults to be per-
formed. Figure 4 sketches the result of the correspond-
ing routing/resolution procedure. The blackboard identi-
fies the SearchResultsView view component as a component
which provides the action displaySearchResults. However,
before this component can be invoked its data requirements
(searchResults) have to be satisfied. This data can be provided
by the SearchWebService service component, whose data re-
quirements are satisfied by the output of the SearchForm com-

<<component>>
SearchForm

start

destination

dateTime

displaySearchResults

Figure 3. Example Component



<<component>>
SearchForm

start

destination

dateTime

<<component>>
SearchResultsView

searchResults
<<component>>
SearchWebService

displaySearchResults

Figure 4. Routing/Resolution Example

ponent. After the blackboard has established this structure of
matching components, it first invokes the SearchWebService
component and then the SearchResultsView component.

Architecture
The proposed framework is technically based on the Android
OS platform. [4] This is mainly due to the qualifications of
the computer science students at the RheinMain University
of Applied Sciences: Android apps are implemented in Java
and the computer science curriculum comprises a thorough
introduction to Java. Android OS is an open platform which
is freely available. Development and deployment of Android
apps poses less thresholds for student developers in a hetero-
geneous and federated development environment.

Figure 5 outlines the framework architecture in the form of
an FMC (Fundamental Modeling Concepts, cf. [7]) block di-
agram. Prototype apps are embedded into the client-side of
the framework. Part of the client structure is predetermined
by the Android architecture: A native Android app is directly
connected via so-called intents to the Android Runtime Envi-
ronment. Intents are the basis of the Android event system (cf.
[4] for more details). The framework architecture extends the
Android Runtime Environment by the Runtime Environment
Supplement. This supplement intercepts the intents sent by
the prototype app and implements the blackboard-like event
routing and data resolution mechanism.

Two types of components are distinguished within the frame-
work:

1. View component: User interface.

2. Service component: Business logic.

The framework concept view component can be directly
mapped to the Android concept activity. Activities are the
main components of each Android app. Each activity con-
sists of one view. There is no direct match for the framework
concept service component. In order to prevent confusion
with the existing Android concept service, the name helper
has been chosen for the implementation of framework service
components.

The Runtime Environment Supplement comprises the Proto-
type Configuration, the Blackboard Controller and the Black-
board Data. The Blackboard Controller routes events (in-
tents) and resolves data dependencies according to the Pro-
totype Configuration and the current status of the Blackboard

Data. The Blackboard Controller invokes components indi-
rectly by sending a corresponding intent to the Android Run-
time Environment. Therefore existing native Android apps
can be connected to the Runtime Environment Supplement
with minimum effort.

The Prototype Configuration is implemented as an extension
of the XML-based Android manifest file and contains the
definition of the components and their connectors. The re-
quired data and provided data posts are implemented via a
simple key-value access paradigm. The blackboard data is
stored in a non-SQL database. A copy of the blackboard data
and, depending on the configuration, the inter-component-
communication is stored in a central database on the Test Sup-
port Server. This facilitates later usability evaluations.

Evaluation
During the project SMAT a first version of the proposed
framework has been implemented and has been used for the
iterative development of an evolving mobile application pro-
totype in the domain of public transportation. The resulting
prototype is fit for lab and field tests. It captures the whole
range of variability introduced during the evolution of its fea-
tures, including high fidelity features (e.g. location-based in-
formation). The effort for the incorporation of changes and
new features has been generally low.

Only one of the major disadvantages of the blackboard ar-
chitecture style emerged: Routing can become complicated
and make e.g. debugging difficult. Insidious tight coupling in
the sense of [8] further complicates the development. There
is a tight coupling between the component definition in the
prototype configuration (XML file) and the component im-
plementation (Java source code). The coupling is insidious,
as the coupling is invisible to the existing development tools.
Problems with complex routing and insidious tight coupling
can be mitigated or even prevented by improving the devel-
opment environment.

CONCLUSION
This paper reports on work in progress regarding the devel-
opment of a framework for evolving high fidelity mobile ap-
plication prototypes. The framework architecture has been
designed on the basis of the blackboard architecture style.
This is, to the authors’ knowledge, the first framework of this
type based on this architecture style. A first version of the
framework has been implemented and successfully utilized.
This indicates that the chosen approach is (in the context



Mobile Client

User
Android 
Runtime

Environment

Prototype App

Activity Activity
UI

Test Support 
Server

Web
Service

Helper Helper

intent

intent

Runtime Environment 
Supplement

Prototype 
Configuration

Blackboard 
Data

Blackboard 
Controller

call

Figure 5. Framework Architecture (Outline)

of high-fidelity mobile application prototypes) a promising
light-weight alternative to existing component architectures.

Further research and development will focus on enhance-
ments of the framework and on the incorporation of usabil-
ity evaluation features. The enhancements comprise better
support for prototype app developers (e.g. make all relevant
types of coupling visible to the tool chain) and for test man-
agers (e.g. feature-based configuration interface). The incor-
poration of usability evaluation features will be based on the
existing interceptor architecture.

ACKNOWLEDGMENTS
Part of this paper is based on findings of the research project
SMAT, which has been partially funded by the HMWK (Hes-
sen State Ministry of Higher Education, Research and the
Arts) under the program “Forschung für die Praxis”.

REFERENCES
1. Clements, P., and Northrop, L. Software Product Lines:

Practices and Patterns. Addison-Wesley, 2002.
2. Coursaris, C. K., and Kim, D. J. A Meta-Analytical

Review of Empirical Mobile Usability Studies. J.
Usability Studies 6, 3 (May 2011), 11:117–11:171.

3. De Moor, K., Ketyko, I., Joseph, W., Deryckere, T.,
De Marez, L., Martens, L., and Verleye, G. Proposed
framework for evaluating quality of experience in a
mobile, testbed-oriented living lab setting. Mob. Netw.
Appl. 15, 3 (June 2010), 378–391.

4. Google. Android developers.
http://developer.android.com.

5. Gulliksen, J., Göransson, B., Boivie, I., Blomkvist, S.,
Persson, J., and Cajander, Å. Key principles for
user-centred systems design. Behaviour & IT 22, 6
(2003), 397–409.

6. Humayoun, S. R., Dubinsky, Y., and Catarci, T. A
three-fold integration framework to incorporate
user-centered design into agile software development. In
Proceedings of the 2nd international conference on
Human centered design, HCD’11 (2011), 55–64.

7. Knoepfel, A., Groene, B., and Tabeling, P. Fundamental
Modeling Concepts: Effective Communication of IT
Systems. Wiley, 2006.

8. Lewis, B. Insidious tight coupling.
http://www.drdobbs.com/architecture-and-design/
insidious-tight-coupling/196802793.

9. Martin, R. C. Agile software development: principles,
patterns, and practices. Prentice Hall, 2012.

10. Niklas, S., Böhm, S., and Strohmeier, S. Mobile Job
Board Applications – Which are the Key Success
Factors? A Literature Review and Conceptual
Framework. In Proceedings of the 4th European
Academic Workshop on Electronic Human Resource
Management (Nottingham, UK, 2012).

11. OSGi Alliance. http://www.osgi.org/.

12. Padovitz, A., Loke, S. W., and Zaslavsky, A. The
ECORA framework: A hybrid architecture for
context-oriented pervasive computing. Pervasive Mob.
Comput. 4, 2 (Apr. 2008), 182–215.

13. Platzer, E., and Petrovic, O. Development of technology
acceptance research for mobile services. In MIPRO,
2010 Proceedings of the 33rd International Convention
(May 2010), 1154–1159.

14. Quinton, C., Mosser, S., Parra, C., and Duchien, L.
Using multiple feature models to design applications for
mobile phones. In Proceedings of the 15th International
Software Product Line Conference, Volume 2, SPLC ’11,
ACM (New York, NY, USA, 2011), 23:1–23:8.

15. Shaw, M., and Garlan, D. Software architecture:
perspectives on an emerging discipline. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1996.

16. Tamminen, S., Oulasvirta, A., Toiskallio, K., and
Kankainen, A. Understanding mobile contexts. Personal
Ubiquitous Comput. 8, 2 (May 2004), 135–143.

http://developer.android.com
http://www.drdobbs.com/architecture-and-design/insidious-tight-coupling/196802793
http://www.drdobbs.com/architecture-and-design/insidious-tight-coupling/196802793
http://www.osgi.org/

	Introduction
	Background and Related Work
	Prototyping Framework
	Component Model
	Architecture
	Evaluation

	Conclusion
	Acknowledgments
	REFERENCES 

