

Managing Consistency in Wizard of Oz Studies A Challenge of Prototyping Natural Language Interactions

Stephan Schlögl, Gavin Doherty, & Saturnino Luz

What is Wizard of Oz?

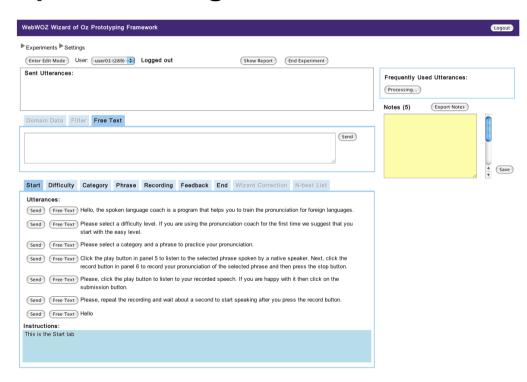
- Wizard of Oz is a prototyping method in which a human 'wizard' mimics the actions of a system
- It has its roots in **Natural Language Processing** (cf. Gould et al., 1983)
- It allows researchers and designers to evaluate potential user experiences without building a fully working system first

(Buxton, 2007)

27/8/13

Why is Wizard of Oz Relevant for NLP?

- As with graphical user interfaces early and iterative evaluation is important to cater for high quality software
- Technical aspects: Support dialog design, collect language/interaction corpora and test language technology components
- Design aspects: Explore usability and user experience


The Challenge of the Wizard Task?

- Follow a defined test protocol (as close as possible...)
- Deal with stress
- Be prepared for the unexpected
- Make test participants believe that they are interacting with a real system
 - Act consistently
 - Act predictable
 - Act realistic

Overall Task

Simulate text-based natural language system responses using WebWOZ¹

¹https://github.com/stephanschloegl/WebWOZ

Study A

- Interactive system that helps customers to choose an appropriate Internet Connection bundle
- 11 test participants
- 1 wizard
- Participant was able to speak to the system in German
- System (=wizard) answers using a set of pre-defined, pre-translated utterances
- Utterances are displayed on the screen
- Further info: Schneider et al. 2010

6

Study B

- Extending Study A into the spoken language domain
- 17 test participants
- 1 wizard
- Participant was able to speak to the system in German
- System (=wizard) answers using pre-defined, pretranslated as well as pre-recorded utterances
- 2 modes:
 - Mode 1: Utterances are displayed on the screen
 - Mode 2: Recorded utterances are played
- Further info: Schneider 2013

Study C

- WOZ used with online language pronunciation trainer
- 13 test participants
- 1 wizard
- Participant was training her/his pronunciation of predefined English sentences
- System (=wizard) was giving textual feedback based on the evaluation results
- Further info: Cabral et al., 2012a/b

8

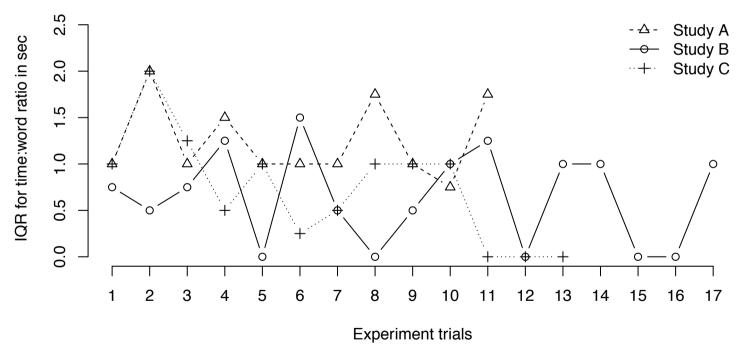
Some Pictures

Further info: Cabral et al. 2012a/b

Summary

3 wizard studies

- 1 wizard interacting with 11 participants (Study A)
- 1 wizard interacting with 17 participants (Study B)
- 1 wizard interacting with 13 participants (Study C)
- Wizards select/generate text utterances to be sent to participants
- 1 challenge:

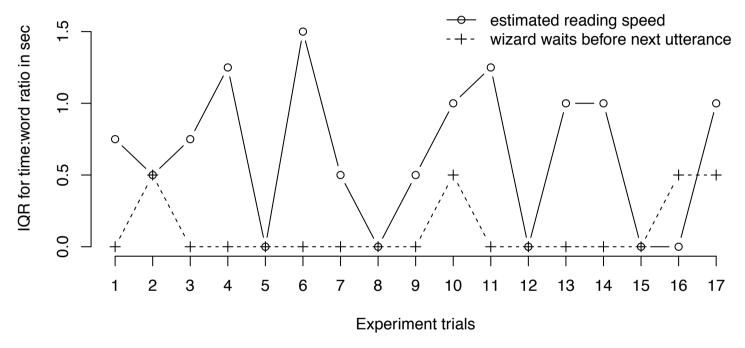

Estimate a participants reading speed in cases where a follow-up utterance needs to be sent

Meta Analysis: Wizard consistency

Results Meta Analysis

Wizards have problems estimating reading speed consistently

Interquartile Range (IQR) Values for Text-based Interaction; Comparison of studies A, B and C.


Critical Reflection

- Wizards were not actively asked to estimate a participant's reading speed
- Studies were not specifically designed for this analysis
- Wizards might not have had sufficient training

- We report on a wizards' natural actions
- One wizard highlighted that she was reading utterances in her mind
- A study showed that the time spent on wizard training is often less than 30 minutes and in our case no improvements over the course of several sessions were noticed

Comparison Text vs. Speech in Study B

Interquartile Range (IQR) Values for Text-based Interaction vs. Speech-based Interaction Study B.

One-tailed paired Student's t-test: t(16)= 3.9105, p=0.0006

Discussion

- WOZ is a valuable prototyping method but its dependency on a human wizard makes it susceptible for errors
- Inconsistent wizard behavior may bias study results (Note: While in the discussed experiments inconsistencies did not lead to significantly reduced user satisfaction ratings, such might be a problem when it comes to stricter experimental settings)
- Additional support for wizards (e.g. through additional contextual information or timing functionalities) can improve the validity of the method

Acknowledgments

References

- Buxton, B. (2007). Sketching User Experiences. Morgan Kaufman.
- Cabral, J. P., Kane, M., Ahmed, Z., Abou-Zleikha, M., Székely, É., Zahra, A., Ogbureke, K. U., et al. (2012a).
 Rapidly Testing the Interaction Model of a Pronunciation Training System via Wizard-of-Oz. Proceedings of LREC. Istanbul, Turkey.
- Cabral, J. P., Kane, M., Ahmed, Z., Székely, É., Zahra, A., Ogbureke, K. U., Cahill, P., et al. (2012b). Using the Wizard-of-Oz Framework in a Pronunciation Training System for Providing User Feedback and Instructions. Proceedings of IS ADEPT. Stockholm, Sweden.
- Gould, J. D., Conti, J., & Hovanyecz, T. (1983). Composing letters with a simulated listening typewriter.
 Communications of the ACM, 26(4), 295-308.
- Schlögl, S., Doherty, G., Luz, S., & Karamanis, N. (2010a). WebWOZ: A Wizard of Oz Prototyping Framework. Proceedings of ACM EICS (pp. 109-114). Berlin, Germany.
- Schlögl, S., Doherty, G., Karamanis, N., Schneider, A. H., & Luz, S. (2010b). Observing the Wizard: In Search of a generic Interface for Wizard of Oz Studies. Proceedings of Irish HCI (pp. 43-50). Dublin, Ireland.
- Schlögl, S., Schneider, A. H., Luz, S., & Doherty, G. (2011). Supporting the Wizard: Interface Improvements in Wizard of Oz Studies. Proceedings of BSC HCI. Newcastle Upon Tyne, UK.
- Schneider, A. H., Sluis, I. V. D., & Luz, S. (2010). Comparing Intrinsic and Extrinsic Evaluation of MT Output in a Dialogue System. Proceedings of IWSLT (pp. 329-336). Paris, France.
- Schneider, A. H. (2013). Intrinsic and Extrinsic Component Evaluation in Interactive Multilingual Speech Applications. Thesis: Trinity College, University of Dublin.

PID-MAD 2013